Journal Papers
"Impedance Compensation of SUBAR for Back-Drivable Force Mode Actuation,"
Year of publication
2009
Author
K. KONG, H. Moon, B. Hwang, D. Jeon, and M. Tomizuka
Journal
IEEE Transactions on Robotics
Volume
25
Number
3
Page
512-521

Abstract

The Sogang University biomedical assistive robot (SUBAR), which is an advanced version of the exoskeleton for patients and the old by Songang (EXPOS) is a wearable robot developed to assist physically impaired people. It provides a person with assistive forces controlled by human intentions. If a standard geared DC motor is applied, however, the control efforts will be used mainly to overcome the resistive forces caused by the friction, the damping, and the inertia in actuators. In this paper, such undesired properties are rejected by applying a flexible transmission. With the proposed method, it is intended that an actuator exhibits zero impedance without friction while generating the desired torques precisely. Since the actuation system of SUBAR has a large model variation due to human-robot interaction, a control algorithm for the flexible transmission is designed based on a robust control method. In this paper, the mechanical design of SUBAR, including the flexible transmission and its associated control algorithm, are presented. They are also verified by experiments. 


Paper linkhttps://ieeexplore.ieee.org/document/4912334